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Abstract: With the substantial increase in spatio-temporal mobile traffic, reducing the network-level
energy consumption while satisfying various quality-of-service (QoS) requirements has become
one of the most important challenges facing six-generation (6G) wireless networks. We herein
propose a novel multi-agent distributed Q-learning based outage-aware cell breathing (MAQ-OCB)
framework to optimize energy efficiency (EE) and user outage jointly. Through extensive simulations,
we demonstrate that the proposed MAQ-OCB can achieve the EE-optimal solution obtained by
the exhaustive search algorithm. In addition, MAQ-OCB significantly outperforms conventional
algorithms such as no transmission-power-control (No TPC), On-Off, centralized Q-learning based
outage-aware cell breathing (C-OCB), and random-action algorithms.

Keywords: joint optimization; energy-efficiency; user outage; cell breathing; multi-agent distributed
Q-learning; ultra-dense small cell network

1. Introduction

Recently, sixth-generation (6G) wireless networks have garnered significant attention
from both industry and academia for supporting emerging novel mobile services such
as high-fidelity holograms, immersive extended reality (XR), tactile internet, industry 4.0,
smart home/city, and digital twins [1–3]. Various key performance indicators (KPIs) are
being considered for 6G wireless networks, including peak data rate, user-experienced data
rate, latency, mobility, connection density, spectral efficiency (SE), energy efficiency (EE),
and reliability [4]. Among the KPIs, EE is expected to garner much more attention compared
with the other KPIs because 6G wireless networks will integrate traditional terrestrial mobile
networks with emerging space, aerial, and underwater networks to provide global and
ubiquitous coverage [5,6].

1.1. Motivation and Related Works

Reducing the power consumption of base stations (BSs) is crucial because BSs consume
approximately 80% or more of the total energy of cellular networks in general. Accordingly,
various studies to maximize EE have been performed, particularly for heterogeneous
ultra-dense networks. For example, the optimal frequency reuse factor that can maximize
the SE or EE was investigated in ultra-dense networks [7]; it was demonstrated that the
universal frequency reuse was optimal in terms of the SE for arbitrary BS/user density
ratios, and that both the normalized spectral and energy efficiency (SEE) gains of the
universal frequency reuse over the partial frequency reuse increased with the BS/user
density ratio. In [8], a density clustering-based BS control algorithm was proposed for
energy-efficient ultra-dense cellular Internet of Things (IoT) Networks, where each BS
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switches to the awake/sleep mode based on user distribution to improve both the average
area throughput and network EE. In addition, the authors of [9] proposed energy-efficient
small cell networks using a smart on/off scheduling strategy where a certain fraction of
small cell BSs (SBSs) are involved, which operate using less energy-consuming sleeping
states to reduce the energy consumption.

Various machine-learning techniques have recently been applied to ultra-dense net-
works to improve EE. A deep Q-learning (DQL) algorithm to maximize the EE of ultra-dense
networks has been proposed in [10,11]. In [10], a simple scenario involving only a single
macro cell BS (MBS) and multiple femto BSs was considered to validate the performance,
and the authors of [11] proposed the joint optimization of EE and throughput-adequacy of
5G heterogeneous cell. Here, the reward of DQL is designed on the basis of system-level EE.
In addition, deep reinforcement learning (DRL) can be used to improve EE in heterogeneous
cellular networks [12,13]. A DRL-based SBS activation strategy that activates the optimal
number of SBSs to reduce cumulative energy consumption in heterogeneous cellular net-
works has been proposed in [12], where a deep neural network (DNN) was utilized to
explicitly predict the arrival rates based on spatio–temporal correlations among SBS traffic.
Moreover, in [13], three-kinds (centralized, multi-agent, and transfer learning) of Deep
Q-Networks (DQNs) are utilized to improve the system-level EE of two-tier heterogeneous
networks with multi-channel transmissions. Here, power control and user association were
jointly optimized. The authors of [14] proposed a double DQN-based resource allocation
framework to maximize the total EE by separating the selected action from the target
Q-value generator in a cloud radio access network. In [15], a deep learning-based multiple-
input multiple-output (MIMO) non-orthogonal multiple access (NOMA) framework was
proposed to maximize both the sum rate and EE, where rapidly changing channel condi-
tions and an extremely complex spatial structure were assumed for the MIMO–NOMA
system. Furthermore, in [16], a joint optimization framework involving power ramping
and preamble selection was considered to improve the EE of narrow-band Internet of
Things (NB-IoT) systems, where users independently learn their own policies for preamble
transmissions based on a distributed multi-agent reinforcement learning algorithm.

However, conventional techniques reported in the literature exhibit extremely high
computational complexity and require repetitive and intensive computations because they
are based on a DNN-based optimization framework. Therefore, we herein propose a
novel multi-agent distributed Q-learning based outage-aware cell breathing (MAQ-OCB)
technique to maximize EE while reducing the outage probability of users in ultra-dense
small cell networks. In addition, we demonstrate the performance results of the proposed
algorithm in accordance with the amount of SBS collaboration level.

1.2. Paper Organization

The remainder of this paper is organized as follows: The system model of our proposed
reinforcement learning framework for jointly optimizing EE and user outage is described in
Section 2. In Section 3, MAQ-OCB considering the level of SBS collaborations is presented.
Via MATLAB simulations, we demonstrate the performance excellency of MAQ-OCB
and present a comparison with several conventional algorithms. Finally, we present the
conclusions in Section 5.

2. System Model

We herein take into account downlink ultra-dense small cell networks configured with
several MBSs (M), SBSs (N), and users (U). Assume that the users are randomly distributed
within a cell radius, and MBSs are considered as interfering with users associated with
each SBS. Users with a signal-to-interference-plus-noise ratio (SINR) less than the SINR
threshold are referred to as outage users. Figure 1 shows the proposed multi-agent Q-
learning framework for maximizing EE while minimizing user outage in ultra-dense small
cell networks. In this framework, each agent considers its neighbor SBSs’ state information,
and the reward is shared with all SBSs.
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Each user measures the channel quality of serving the SBS and the neighbor SBSs based
on the measured reference-signal-received-power (RSRP). This is a general parameter used
for deciding the user association in ultra-dense small cell networks. Further, an infinite-
impulse response (IIR)-based averaging method is used so that we can reflect wireless
channel dynamics caused by small-scale fading and noise [17], where reliable and stable
RSRP values can be calculated. The RSRP value of user u from the SBS c can be calculated
as Pr(u, c) = Pt(c)

d(u,c)ρ . Here, Pt(c) is the transmission power of SBS c, d(u, c) is the distance
between the user u and an SBS c, and ρ is the path loss exponent. User u is associated with
an SBS that provides the highest RSRP value. Using this RSRP value, the SINR of the user
u for the SBS c can be obtained as follows:

γ(u, c) =
Pr(u, c)

∑i 6=c,i∈N Pr(u, i) + ∑j∈M Pr(u, j) + σ2
u

. (1)

Here, σ2
u is the thermal noise power of user u, ‘∑i 6=c,i∈N Pr(u, i)’ is the total amount of

interference caused by all SBSs, and ‘∑j∈M Pr(u, j)’ is the total amount of interference
caused by all MBSs. In this paper, if γ(u, c) < γth, ∀c ∈ N, user u is treated as an outage
user where γth is the SINR outage threshold.

Figure 1. System model of proposed multi-agent Q-learning framework for maximizing EE while
minimizing user outage in ultra-dense small cell networks.

Using Equation (1), the achievable data rate of user u included in SBS c (ζ(u, c)) is
expressed as

ζ(u, c) =
1

|U(c)| ·W(c) · log2

(
1 +

Pr(u, c)
∑i 6=c,i∈N Pr(u, i) + ∑j∈M Pr(u, j) + σ2

u

)
. (2)
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where |U(c)| is the number of users included in SBS c, and W(c) denotes the total amount
of bandwidth of SBS c. In the proposed MAQ-OCB, W(c) is equally distributed to the users
associated with SBS c. To calculate the EE of SBS c, we considered the following power
consumption model for SBS c:

Ptot(c) = Pc(c) +
1
δ
· Pt(c). (3)

Here, δ is the power amplifier efficiency; Pc(c) and Pt(c) express the amounts of fixed
and transmission power consumed in SBS c, respectively. In particular, based on the SBS
mode (active or sleep), the amount of power consumption may differ. Moreover, using
Equations (2) and (3), the EE of SBS c (EE(c)) can be calculated as

EE(c) =

∑
u∈U(c)

{
1

|U(c)| ·W(c) · log2

(
1 +

Pr(u, c)
∑i 6=c,i∈N Pr(u, i) + ∑j∈M Pr(u, j) + σ2

u

)}
Ptot(c)

. (4)

Here, U(c) denotes a user set included in SBS c.

3. Joint Optimization of EE and User Outage Based on Multi-Agent Distributed
Reinforcement Learning in Ultra-Dense Small Cell Networks

To obtain the Q-value, a centralized Q-learning algorithm takes into account the state
information and reward of all agents. In this case, the computational complexity increases
exponentially in proportion to the size of the Q-table, i.e., the learning time is significantly
higher than that of the distributed Q-learning algorithm. In the proposed MAQ-OCB
algorithm, agent i only considers the state information of the neighbor SBSs set (=i), which
is the union or intersection of active SBSs sets of users included in the serving SBS. With the
neighbor SBSs set, the computational complexity can be reduced significantly, and the
Q-value of agent i can be represented as

Q′i(si(t), ai(t)) = (1− ς)Qi(si(t), ai(t)) + ς[Ri(si(t + 1), ai(t)) + η ·max
a′i∈a

Qi(si(t + 1), a′i)].

(5)
where ς is the learning rate, and η is the discount factor of the proposed Q-learning
framework. Ri(si(t + 1), ai(t)′) describes the reward at the current time step t, and “η ·
maxa′i∈a Qi(si(t + 1), a′i)” expresses the maximum expected value of future reward. At the
beginning of learning, the transmit power of each agent was set randomly, and the Q-values
were also set as zero. Subsequently, each agent chooses one of the following actions: “trans-
mission power up,” “transmission power down,” and “keep current transmission power”.
The action performed by each agent at the time step t is expressed as a = {∆Pt ,−∆Pt , 0},
and the state of each agent can be represented as si = {Pmin, Pmin + ∆Pt , . . . , Pmax}. Further-
more, the state set based on the neighbor SBSs set can be obtained as a Cartesian product
space, Si = ⊗si′ , ∀i′ ∈ =i where ⊗ represents a set product. Thus, using the entire state set
Si and action set a, the agent comprises its Q-table.

Assume that each SBS is as an agent in our multi-agent Q-learning framework. The pro-
posed MAQ-OCB algorithm allows the agent to learn about the network environments
using a decayed epsilon greedy policy so that the agent can explore more diverse states.
The decayed epsilon greedy policy might be a good option to achieve and converge to the
optimal solution by effectively adjusting the ratio between exploitation and exploration.
That is, the decayed epsilon greedy policy gradually attenuates the value of ε considering
the size of the action set (|a|) and the decaying parameter (χ). In this policy, each agent
performs a random action with the probability of ε(ep), and an optimal action with a
probability of 1− ε(ep) to maximize the Q-value, i.e., Q∗ = maxat∈a Q(st, at) [18]. ε(ep)

can be calculated as ε(ep) = εbe × (1− εbe)
ep

χ×|a| .
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3.1. MAQ-OCB with SBS Collaboration

MAQ-OCB with SBS collaboration (MAQ-OCB w/ SC) updates the Q-table using the
states information of the SBSs included in its neighbor SBSs set. Briefly, by implementing
the neighbor SBSs set, agent i adds SBS i′ satisfying d(i, i′) ≤ dth in its neighbor SBSs set
in MAQ-OCB. Here, dth is the threshold value that determines whether SBS i′ is included
in the neighbor SBSs set. Therefore, the reward value of agent i in MAQ-OCB w/ SC is
calculated as

Ri(st, at) = e−
Uout
|U| × ∑

n∈N

∑u∈U(n)

{
1

|U(n)| ·W(n) · log2(1 + γ(u, n))
}

Ptot(n)

. (6)

where Uout and |U| denote the number of outage users not associated with any SBS and
the total number of users, respectively. Based on Equation (6), as the number of users
increases, the weighting factor decays exponentially. In addition, as the number of outage
users decreases, the reward value of the proposed MAQ-OCB increases exponentially.
MAQ-OCB with SBS collaboration can improve the EE of the SBSs while minimizing the
number of outage users with the states and reward information of SBSs included in the
neighbor SBSs set of the ultra-dense small cell networks.

3.2. MAQ-OCB without SBS Collaboration

In MAQ-OCB without SBS collaboration (MAQ-OCB w/o SC), each agent only con-
siders its state and reward information. Therefore, it does not utilize the state and reward
information of the neighbor SBSs. In the MAQ-OCB w/o SC, the reward of agent i can be
represented as

Ri(st, at) = e−
Uout(i)
|U(i)| ×

∑u∈U(i)

{
1
|U(i)| ·W(i) · log2(1 + γ(u, i))

}
Ptot(i)

. (7)

From Equation (7), each agent calculates its reward by considering only its own state
information. Although this MAQ-OCB w/o SC algorithm is advantageous in terms of
computational complexity, it is difficult to ensure its optimal performance compared with
the MAQ-OCB w/ SC algorithm.

4. Simulation Results and Discussions

Simulation setups of the proposed algorithm were implemented in Matlab R2020a,
and the training is conducted on a personal PC with a CPU i7-9750 at 2.6 GHz and a RAM
of 16 GB. In this study, we considered an ultra-dense small cell network with three MBSs
and a system bandwidth of 10 MHz. The detailed simulation parameters are shown in
Table 1. To compare the performance of the proposed MAQ-OCB algorithm, we discuss the
EE-Optimal algorithm. In addition, the no transmission-power-control (No TPC) algorithm
determines the modes of SBSs on the basis of the initial user distribution, whereas a random
action algorithm chooses SBSs’ transmission power randomly. Moreover, it is assumed
that a SBS to which no user is connected is in a sleep mode. The centralized reinforcement
learning-based outage-aware cell breathing (C-OCB) algorithm considers all state and
reward information of all SBSs. Moreover, “On-Off” implies that this algorithm contains
only two actions, i.e., “On” (2W) and “Off” (0W).

Figure 2a,b show the simulation results with respect to the EE and reward when
|U| = 20, |M| = 3, and |N| = 4. The users were randomly distributed within a cell radius
of 400 m. As shown in Figure 2a, as the episodes increased, the EE of MAQ-OCB w/
SC converged rapidly to EE-Optimal, but the MAQ-OCB w/o SC converged slowly to
low values. This result shows that determining the amount of collaboration is essential
to achieve the objective of network operation and management. Because the MAQ-OCB
w/ SC considers the state information of SBSs included in the neighbor SBSs set, it has a
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larger reward and converges faster than the MAQ-OCB w/o SC, which only considers its
own state and reward information. Figure 2c shows the simulation result for the reward
based on the states of agents 1 and agent 2 in the two-agent case of MAQ-OCB. Here,
the global optimum implies the best reward among all states and the local optimum implies
that it is less than the global optimum but higher than adjacent states. If we consider
only each agent’s own state, it is difficult for the agent to escape the local-optimal state.
Although it acts randomly with the probability ε(ep), it is likely to return to the previous
local optimum because it does not have sufficient actions to explore the global optimum.
Because MAQ-OCB w/ SC considers the state information of neighboring SBSs, it may
have relatively many opportunities to find the actions of leaving the local optimum and
exploring the global optimum compared with MAQ-OCB w/o SC. As shown in Figure 2a,b,
the C-OCB considers the states and reward information of all the SBSs, i.e., it has a higher
computational complexity compared with MAQ-OCB w/ SC. Because this algorithm must
explore more states than MAQ-OCB w/ SC, it converges relatively later. MAQ-OCB w/o
SC is superior in terms of computational complexity compared to MAQ-OCB w/Sc and
C-OCB, but shows low performance. On the other hand, in the corresponding scenario,
C-OCB exhibits similar performance to MAQ-OCB w/SC, but computational complexity
increases compared to MAQ-OCB w/SC. The computational complexity of each algorithm
is described in Table 2. In the case of MAQ-OCB (On-Off) w/ SC, MAQ-OCB (On-Off) w/o
SC, and C-OCB (On-Off), because each SBS involves only two actions, i.e., “On” and “Off”,
the rewards of these algorithms will eventually converge to that of the No TPC algorithm.

Table 1. Simulation parameters.

Parameter Value Parameter Value

|M| 3 |N| 4, 6

|U| 20 ∼ 60 dth 150 m ∼ 450 m

δ 0.5 W 10 MHz

σ2 −174 dBm Pa
c 0.25 W

Ps
c 0.025 W ρ 3

ς 0.1 η 0.9

εbe 0.99 χ 330

∆Pt 0.5 W γth 0 dB

Table 2. Computational complexity analysis.

Algorithm EE-Optimal, Reward-Optimal C-OCB MAQ-OCB w/o SC MAQ-OCB w/ SC

O(·) O(|S||N||A||N|) O(|S||N||A||N|) O(|S||A|) O(|S||=||A|)
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(a) (b) (c)

Figure 2. Energy efficiency and reward vs. episode when |U| = 20, |M| = 3, and |N| = 4, and global
optimum vs. local optimum in two-agent case. (a) Accumulated energy efficiency. (b) Accumulated
reward. (c) Global optimum vs. local optimum.

Figures 3 and 4 show the simulation results with respect to the EE and reward when
|U| = 60, |M| = 3, and |N| = 6. The users were randomly distributed within a cell radius
of 400 m. This simulation scenario is extremely complicated compared with the scenario
presented in Figure 2a,b. Hence, the convergence of the C-OCB occurs late and its speed
is extremely low, i.e., a large number of episodes and iterations are required to obtain the
global-optimal solution. Additionally, as mentioned before, MAQ-OCB w/ SC considers
the state information of neighboring SBSs so that it has the greatest reward compared to
No TPC, random action, C-OCB(On-Off), MAQ-OCB(On-Off), C-OCB, and MAQ-OCB
w/o SC. Similar to Figure 3, the EE of MAQ-OCB w/ SC converged rapidly to EE-Optimal,
but the MAQ-OCB w/o SC and C-OCB converged slowly to low values. After convergence,
No TPC, C-OCB(On-Off), MAQ-OCB(On-Off) w/o SC, MAQ-OCB(On-Off) w/ SC, C-OCB,
MAQ-OCB w/o SC, and MAQ-OCB w/ SC achieve 34.50%, 34.42%, 34.36%, 34.33%,
86.94%, 90.60%, and 93.23% in terms of EE, compared with EE-Optimal, respectively. In
addition, Figure 5 shows the number of outage users based on the episode when |U| = 60,
|M| = 3, and |N| = 6. The proposed MAQ-OCB technique converges to the Reward-Optimal,
and the convergence speed of the C-OCB is relatively slower than that of the proposed
algorithm because of its high computational complexity. Furthermore, after convergence,
the numbers of outage users of EE-Optimal, Reward-Optimal, No TPC, C-OCB(On-Off),
MAQ-OCB(On-Off) w/o SC, MAQ-OCB(On-Off) w/ SC, C-OCB, MAQ-OCB w/o SC,
and MAQ-OCB w/ SC are 7, 1, 2, 2.07, 2.33, 2.25, 3.95, 2.24, and 1.61, respectively. That
is, except Reward-Optimal, MAQ-OCB w/ SC has the smallest number of outage users
among these algorithms.

Figure 3. Reward vs. episode when |U| = 60, |M| = 3, and |N| = 6.
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Figure 4. Energy efficiency vs. episode when |U| = 60, |M| = 3, and |N| = 6.

Figure 5. Number of outage users vs. episode when |U| = 60, |M| = 3, and |N| = 6.

5. Conclusions

To maximize the network-wide EE while minimizing outage users in ultra-dense small
cell networks, we proposed the MAQ-OCB algorithm based on a multi-agent reinforcement
learning framework. To analyze the system performance based on the level of SBS collabo-
rations, we introduced two outage-aware cell breathing algorithms in ultra-dense small cell
networks, i.e., MAQ-OCB w/ SC, which considers the state information of SBSs included in
its neighbor SBSs set, and MAQ-OCB w/o SC, which updates its Q-table considering only
its own state and reward information. Through intensive simulations, we demonstrated
that MAQ-OCB can achieve the EE-optimal solution and outperformed the conventional
algorithms in terms of EE and the number of outage users.
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Abbreviations

6G Sixth-generation
BS Base station
C-OCB Centralized Q-learning based outage-aware cell breathing
DNN Deep neural network
DQL Deep Q-learning
DQN Deep Q-network
EE Energy efficiency
IIR Infinite impulse response
IoT Internet of Things
KPI Key performance indicator
MAQ-OCB Multi-agent Q-learning based outage-aware cell breathing
MAQ-OCB w/ SC MAQ-OCB with SBS collaboration
MAQ-OCB w/o SC MAQ-OCB without SBS collaboration
MBS Macro cell BS
MIMO Multiple-input multiple-output
NB-IoT Narrow-band Internet of Things
NOMA Non-orthogonal multiple access
No TPC No transmission power control
RSRP Reference signal received power
SBS Small cell BS
SE Spectral efficiency
SEE Spectral and energy efficiency
SINR Signal-to-interference-plus-noise ratio
XR Extended reality
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